Диэлектрики и проводники в электрическом поле

Диэлектрики и проводники в электрическом поле – тема статьи. Ниже рассмотрены физические процессы, происходящие внутри тел и снаружи. Рекомендуется ознакомиться с обзорами на тему электрического потенциала и электрического напряжения.

Электричество и магнетизм

Электричество известно с давних времён, но иных сведений, кроме признания существования, о явлении не приводилось. Узнали лишь, что статический заряд удаётся получить трением, и дело застопорилось. Сложно сказать, что открыто раньше, но геологи считают, что магнетизм известен людям по крайней мере с V века до нашей эры. Находки указывают, что намагниченные куски породы использовались в неизвестных целях на территории современной Турции.

Известно, что систематизация данных по магнетизму началась раньше. Первопроходцем стал известный ныне, благодаря единственному документу, Перегрин. В 1269 году он написал манускрипт, где описал и систематизировал данные по магнитам, предложил методику ориентации для путешественников в пространстве. С латинского «перегринус», «пилигрим» – путешественник. Уже в первые века нашей эры свойство магнита активно эксплуатировалось китайскими мореходами. Перегрин вскрывал ряд свойств:

  1. Магнит всегда располагается по направлению с севера на юг. Следовательно, обнаруживает два полюса. Одноименные отталкиваются, а разноимённые притягиваются.
  2. Если магнит разломить пополам, получается два совершенно отдельных куска, обладающие в полной мере свойствами первоначального. Получить полюс по отдельности простыми средствами не получится.

Что касается электричества, физики отдают несомненный приоритет Гильберту. Этот человек создал трактат, где собрал и систематизировал имеющиеся данные, много экспериментировал самостоятельно. Гильберт, по странному совпадению занялся сравнением магнетизма и электричества. К 1600 году никто не задумывался о связи материй и ничего не мог доказать. Гильберт установил, что электричество – в его понимании – считается слабой субстанцией: заряд легко смывается водой, экранируется и характеризуется малой силой взаимодействия. Для теории и будущих поколений сделал важное наблюдение:

  • Магнитный шар из руды – Гильберт назвал его Тереллой – ведёт себя подобно Земному в смысле действия на стрелку компаса.
  • Электрическое взаимодействие распространяется по прямой. Следовательно, Гильберт оказался первым, кто правильно охарактеризовал силовые линии поля.

Два века понадобилось человечеству, чтобы подобный эффект обнаружить в проводе с током. Сказанное приводит к выводу, что исследования тормозились, вдобавок к инквизиции, отсутствием генератора электричества – не с чем проводить эксперименты. Тереть янтарь шерстью утомительно и малоэффективно. Иллюстрации Гильберта (см. рис.) подтолкнули исследователей к изучению структуры силовых линий, что в будущем помогло объяснить поведение диэлектриков и проводников в магнитном поле.

Гильберту приписывают первую систематизации материалов. Он искал вещества, демонстрирующие способности к электризации, составил списки отличающихся. В последний класс попало большинство металлов, в первый – диэлектрики. Сегодня установлено, что статический заряд распределить возможно практически на любом теле. Но трением приобретают необычные свойства преимущественно диэлектрики. Таким образом, Гильберт первым систематизировал материалы, хотя на момент 1600 года не смог дать удовлетворительные объяснения.

Считается, что первый электростатический генератор изобрёл Отто фон Герике. Серный шар, вращающийся на железной оси, натирали ладонями, наблюдая искры электрического разряда. Герике обнаружил перераспределение статического электричества по поверхности различных тел. На основе созданного генератора стали ставить опыты, к середине XVIII века материалы оказались поделены на классы (проводники и диэлектрики) и по знаку получаемого трением заряда. Появилось смоляное (отрицательное) и стеклянное (положительное) электричество.

Дальнейшие эксперименты позволили при помощи крутильных весов (на тонкой нити) установить закон притяжения и отталкивания между зарядами. Это сделал Шарль Кулон. Он описал количественно силу взаимодействия, подтвердив предположение Гильберта о линейности силовых линий электрических зарядов. На это ушло без малого два века. Закон Кулона позволил учёным дать первые объяснения касательно поведения диэлектриков и проводников в электрическом поле. Уже тогда присутствовало любопытное приспособление, способное удивить и скептика…

Электрофорус

Если поведение диэлектриков в электрическом поле долгое время оставалось неизученным, благодаря металлам Вольта узнал больше об электричестве и позже смог изобрести знаменитый гальванический источник питания. Речь идёт об электрофорусе. Прибор, не слишком известный в России, будоражил умы западных учёных, сегодня служит непременным элементом развлечения студентов. Прибор сейчас покажет (и докажет), как ведут себя проводники в электрическом поле.

Электрофорус – статический генератор с ручным взводом, металлическая печать солидного размера, лучший способ демонстрации статического электричества. Представим, что на круглую подложку из древесины наклеен тончайший лист резины. Вольта говорил, что толстый кусок проявляет худшие свойства. Но не сумел объяснить причину. В давнее время люди не знали, что диэлектрики обладают способностью запасать энергию электрического поля во внутренней структуре. Принцип теперь используется в большинстве конденсаторов.

Тонкий кусок меньше энергии поля поглощал и больше оставлял на поверхности в виде заряда. Трением быстрее доводился до кондиции. Указанный факт отметил Вольта. Требовалось резину натереть. Вольта делал это добрым куском шерсти в течение ряда минут.

Заключительным штрихом конструкции служил тонкий металлический диск, полностью покрывавший резиновый. Толщина выбиралась меньшей, чтобы свойства проводника в электрическом поле проявились ярче. Что происходило в электрофорусе:

  1. Оператор натирал резину до образования плотного статического заряда электронов.
  2. Убирал шерсть и опускал сверху металлический диск.
  3. Проводник электризовался влиянием. Из-за шероховатости поверхности точек соприкосновения оказывалось мало, низ диска заряжался положительно. Это вызвано оттоком электронов, вытолкнутых полем наверх (см. ниже).
  4. Потом оператор кратковременно заземлял верхнюю часть диска лёгким касанием и разрывал поверхности.
  5. На нижней стороне металлической «печати» оставался свободный статический положительный заряд.

Опыт повторялся десятки раз. Очевидцы заявляют о сотнях, а Вольта говорил, что «сложно избавить резину от флюида» и предлагал делать это солнечными лучами, пламенем свечи и прочими сильными средствами. Чтобы понять, как работает электрофорус, нужно иметь представление о поведении проводника в электрическом поле.

Поведение проводника в электрическом поле

Деление на проводники, полупроводники и диэлектрики условное. Нет чёткой границы, градация ведётся по удельной проводимости веществ. Проводники хорошо проводят ток, диэлектрики практически лишены указанного качества.

Рассмотрим случай однородного поля с прямыми и параллельными друг другу силовыми линиями, как в большинстве учебников физики. Помещённый в постоянное поле металл начинает заряжаться статическим электричеством, как описано выше. Смысл: линии напряжённости идут в направлении, куда двигался бы положительный заряд – так решил Франклин. Но электроны отрицательны, плывут против течения.

В результате на образце проводника со стороны истока поля скапливается избыток носителей со знаком минус. А противоположный конец металла положителен. Процесс происходит так:

  1. Поле проникает внутрь металла.
  2. Проводник полон свободных носителей заряда, двигающихся вдоль силовых линий.
  3. Процесс перераспределения идёт, пока собственное поле электронов и свободных орбит атомов не уравновесит внешнее воздействие.
  4. На этом влияние постоянного электрического поля исчерпывается.

Что происходит, если напряжённость поля непостоянна во времени? Допустим, на поверхность падает электромагнитная волна, вызывая попеременное движение электронов в обе стороны, что вызовет ответную электромагнитную волну. Получается, проводник обладает экранирующими свойствами. Отразится лишь половина, это доказывается в теории динамики распространении радиоволн. Чтобы эффект экранирования стал полным, требуется металл заземлить. Что делается на практике.

Поведение диэлектрика в электрическом поле

Стройной теории по поводу поведения диэлектриков в электрическом поле сегодня нет. Физики объясняют происходящее так: в толще вещества присутствуют диполи, образованные сложным строением полимера или аморфного вещества. Размер структур лежит в области нанотехнологий. Молекулы обладают упругими свойствами, проникающее внутрь поле ориентирует их соответствующим образом. Положительная часть смещается по направлению поля, а отрицательная – против.

Диэлектрик способен накапливать энергию поля. Это используется в конденсаторах. Показано, что ёмкость их увеличивается в количество раз, равное диэлектрической проницаемости материала, помещённого между обкладками (для воздуха и вакуума величина равняется 1). Опишем происходящее:

  1. Конденсатор способен зарядиться лишь до уровня приложенного напряжения.
  2. Между обкладками создаётся поле. Уровень его напряжённости вычисляется через разницу электрических потенциалов.
  3. Поле действует на диэлектрик. Диполи внутри начинают ориентироваться так, чтобы с лёгкостью ослабить напряжённость поля.
  4. Как результат, напряжение на обкладках понижается, процесс заряда возобновляется, до достижения лимита, определяемого типом диэлектрика. Речь идёт о проницаемости вещества.

Диэлектрики в свободном состоянии не имеют выраженного заряда, описываемый эффект назван поляризацией – созданием поля. Вращение диполей считается лишь механизмом, проявляющимся при внешнем воздействии. Во вторую очередь, элементарные заряды начинают вдобавок отдаляться друг от друга. Диполь растягивается. Силы упругости вносят лепту в запасание диэлектриком энергии поля.

Статический заряд на материалы нельзя нанести влиянием. Они хорошо электризуются трением и прикосновением. О чем осведомлены инженеры из нефтяного бизнеса. Масса усилий уходит, чтобы не допустить электризации горючего, приводящей к взрывоопасной ситуации. Задача облегчается тем, что заряд стремится расположиться на поверхности вещества. И специальными гребёнками легко производится нейтрализации. Их ставят на пути потока нефти и снимают на заземлитель избыточный заряд.