Содержание
Электрическое напряжение – величина, характеризующая напряжённость электрического поля внутри проводника. Термин кажется противоречащим общепринятому, но ниже последует объяснение.
Электрическое поле в эфире
Физики пока не в состоянии сказать, что такое электрическое поле. Собрали массу знаний, даже составили описательные формулы, выражения, но сути не представляют. Одновременно высмеивают понятие эфира, а значит, Алессандро Вольту, давшего имя, используемое теперь для обозначения единицы электрического напряжения. Итак, по нынешним меркам:
Электрическое поле – вид материи, посредством которой взаимодействуют электрические заряды.
Читатели уже догадались, что правило выписано из советского учебника (времён СССР), логично поинтересоваться мнением «идеалистов» на Западе (в противовес материалистам). Википедия на русском даёт уже более осторожное определение, трактуя электрическое поле как часть электромагнитного. Не углубляясь в суть.
Как следовало ожидать, на Западе говорят, что электрическое поле – нечто, неподвластное органам чувств, что определяется через единичный тестовый заряд путём опыта. Определение векторного поля тоже мало сообщает об истинной природе вещей. Приходится признать, что человечество пока не понимает поля и причину их взаимодействия указанным образом.
Решили один вид статических зарядов обозначить положительным, второй отрицательным. Существование двух видов признавал ещё Бенджамин Франклин в XVIII веке. Линии электрического поля начинаются и заканчиваются исключительно на зарядах. Это ключевой постулат, объясняющий работу конденсаторов, экранов и прочих приспособлений. Поле принято обозначать силовыми линиями, исходящими из положительных зарядов и входящими в отрицательные. Не все задумываются над причинами происходящего.
Линии направлены по указанному, пробный (тестовый) заряд (см. определение выше) тоже положительный. Вектор направлен по ходу движения. Общеизвестно, что заряды одинакового знака отталкиваются, если пробный положительной полярности, он стремится удалиться. В ту сторону изображают и линии напряжённости электрического поля. Соответственно, пробный заряд притягивается отрицательным.
Сегодня направление тока перепутано с истинным движением электронов по той причине, что физики избрали пробным зарядом положительный. Бытует мнение, что Бенджамин Франклин ввёл в заблуждение целый Земной шар. Он считал, что стекло обладает избытком электрической жидкости (флюида), назвав заряд стеклянным. Соответственно, смоляное электричество – отрицательное (избыток электронов). Читатели уже догадались, что в момент выбора требовалось сделать наоборот.
Разница потенциалов электрического поля
Вследствие путаницы магнитные полюса Земли (истинные) перепутаны. Впрочем, об этом упоминается в теме, касающейся магнитного поля. Итак, линии напряжённости начинаются на положительных зарядах и заканчиваются на отрицательных. В каждой точке характеризуются напряжённостью – силой, действующей на пробный заряд. Эта величина, разумеется, векторная, направленная согласно с силовыми линиями.
Как следует из определения, единицей измерения напряжённости считается Н/Кл, но на практике применяется производная величина – В/м, которая уже ближе стоит к напряжению и привычным обозначениям тока и разницы потенциалов. Опытным путём, построением картины поля определено, что линии поля не пересекаются. Это траектории движения пробного (тестового) положительного (стеклянного) заряда. Линии напряжённости поля не замыкаются на себя по очевидной причине: направление оказалось бы противоположным на концах, что невозможно.
Из этого вытекает малоизвестный публике факт: при любой удалённости электрических зарядов, силовые линии поля все равно найдут путь. Указанный закон проявляется на всех планах Вселенной. Отсюда происходят принципы действия многих устройств. К примеру, поле внутри металла не существует, свободные электроны занимают такое положение близ поверхности, что их собственные линии напряжённости блокируют проникновение внутрь чужеродной материи (термин взят согласно вышеуказанному определению). Договорились, что условно изображая поле на чертеже силовыми линиями, физики через их плотность нанесения охарактеризуют размер напряжённости. Из рисунка станет понятен характер распределения силы.
Указанные утверждения приводят к потенциалу. Если силовые линии не пересекаются, начинаются и заканчиваются на зарядах, косвенно следует, что работа совершаемая вдоль каждой не зависит от формы траектории. Подобные поля в физике принято называть потенциальными:
Работа электрического поля по перемещению заряда зависит исключительно от разницы между потенциалами двух точек – начальной и конечной.
Налицо разница потенциалов. К полям рассматриваемого типа относится и гравитационное. Физики Жданов и Маранджян вполне однозначно трактуют понятие потенциала:
Потенциальной энергией точки в поле становится работа, затраченная полем, чтобы переместить пробный заряд на бесконечно далёкое расстояние.
Это не значит, что работа совершена, если заряд прочно удерживается на месте. При освобождении заряд понемногу отдалился бы в бесконечность. Понятна тесная связь магнитного, электрического и гравитационного полей. Из сказанного проистекает определение для потенциала:
Потенциалом называют потенциальную энергию в поле единичного пробного заряда.
Как правило, потенциал считается скалярной величиной, чтобы удобнее производить вычисления. Для определённости пробный заряд берётся положительным, хотя это неверно. Если работа совершается против сил поля при перемещении в бесконечную точку, потенциал окажется отрицательным. Единицей измерения потенциала применяется вольт.
Определение электрического напряжения
Электрическим напряжением называется разница потенциалов между двумя точками поля. Для разграничения среды и эфира принято использовать термин лишь в реально существующих цепях. К примеру, между облаками и грунтом присутствует напряжение в сотни кВ, о чём прямо не говорится. Вместо этого употребляют термин «разница потенциалов» либо «напряжённость». Становится понятным определение, данное выше.
Когда речь заходит об электрическом напряжении, подразумевают некое тело. Если говорят про эфир, оперируют с напряжённостью поля. Это выгодно с точки зрения расчётов. К примеру, амплитуда сигнала на выходе антенны выражается через напряжённость, через указанный параметр определяется чувствительность приёмника – насколько слабую напряжённость поля устройство способно преобразовать в детализированный и понятный человеку сигнал.
Сравнивая единицы измерения, замечаем, что численно напряжённость равна напряжению, делённому на расстояние между двумя рассматриваемыми точками. Это общепринятая физическая формула. Через выражение оценивается напряжённость поля плоского конденсатора. Термины говорят также о людских представлениях:
- Напряжение обычно возникает в материальном: предмете, человеке.
- Напряжённость наблюдается в отношениях, не представляемые непосредственно в виде материи.
Аналогично напряжённость характеризует поле в эфире, а напряжение описывает проводники и диэлектрики. Эти термины столь разрознены по причине, что теория не отличается стройностью. К примеру, в магнитном поле введены индукция и напряжённость, всем понятно, что первое характеризует поведение материалов и зависит от них, а второе присутствует на абсолютном плане, в эфире. Электрическое поле плохо описано, редкий физик в состоянии сказать, что означает ток смещения в формулах Джеймса Клерка Максвелла.
Итак, показано, что напряжённость считается исходной величиной поля, магнитного и электрического. Электрическое напряжение – производная характеристика, через которую удобно действовать.
Влияние напряжения
Под действием электрического напряжения в проводниках возникает ток, как и при прикосновении внешнего поля. Для поддержания процесса выполняются два условия:
- Замкнуть контур из проводников.
- Создать движущую силу для восполнения энергии поля.
Диэлектрики ведут себя иначе. До определённых пор энергия поля ориентирует по-новому мелкие диполи материала. Удерживающие силы обладают упругостью, разрешая «запасать» энергию в виде механической. Когда внешнее поле ослабевает, система возвращается в прежнее состояние, отдавая накопленное.
Если электрическое напряжение слишком высокое, наступает отрыв диполей либо расформирование. Что внешне выражается в разрушении материала диэлектрика. Тогда говорят о некотором предельном напряжении электрической изоляции, выше которого вещество неспособно выполнить функции. Для обычных, рядовых бытовых цепей проверка диэлектрика осуществляется электрическим напряжением 500 В.
Из истории
Сложно сказать, кто ввёл понятие напряжения, но в исходном виде термина voltage не отмечалось. Англоязычное слово указывает на Алессандро Вольту. Физики эпохи становления отрасли электромагнетизма чаще применяли термин electrical tension. Это нечто, связанное с напряжённостью из механики. Из категории, что и тензометрические датчики напольных весов.
К слову сказать, напряжённость на Западе называют интенсивностью (intensity). Предполагаемый основоположник Вольта потому, что в трудах всех без исключения учёных начала XIX века проскальзывает словцо – tension. В современном английском слова нет.
Ответ прост: это – сложившаяся дань традиции. К примеру, Алессандро Вольта делал доклады зарубежным академиям наук, но не вооружившись устоявшейся терминологией, на ходу придумывал подходящие обозначения. Ввёл в обиход понятие конденсатора (condensor), которое прижилось гораздо лучше, нежели tension. Мы полагаем, что у слова латинские корни, а в Италии и Испании им до сего дня обозначают электрическое напряжение. Следовательно, если ток берет исходное название от Луиджи Гальвани – так говорили все авторы начала XIX века – tension происходило из уст Вольты.
К сожалению, авторы не проводили углублённое изучение вопроса и не могут привести название работы, где впервые прозвучала речь об электрическом напряжении. Но совершенно точно, что Ампер, Араго, Ом оперировали термином tension.
В английском языке слово voltage едва ли появилось ранее 80-х годов XIX века, IEC ввели единицу вольт лишь в 1881 году. Он составлял 100 млн. единиц напряжения системы СГС. В дальнейшем, как эпредполагается, появилось слово voltage, заменив присутствующее раньше tension.