Содержание
Компаратор напряжения – это устройство, выполняющее сравнение имеющегося уровня напряжения с опорным сигналом. Ответом, как правило, становится двоичная величина – да либо нет, нуль или единица.
Благодарности
Без братьев Кузнецовых не представилось бы читателям столь замечательного обзора. Нельзя оставить без внимания труд научного коллектива Нижегородского государственного университета имени Н.И. Лобачевского, его участников, меж которыми:
- Сдобняков В.В.
- Карзанов В.В.
- Шабанов В.Н.
- Рецензенты: Дорохин М.В. И Здоровейщев А.В.
Общая информация
Компаратор сравнивает два напряжения, откуда происходит название. При необходимости формируется либо условный сигнал в виде двоичного кода, либо знак разницы выдаётся иным способом:
- Крутой перепад напряжения (фронт или спад).
- Импульс с заданными характеристиками.
- Сменой полярности выходного напряжения.
- Двоичным кодом в системе логики данного набора микросхем.
Компаратор территориально входит в аналого-цифровой преобразователь, способен применяться и отдельно. От элемента напрямую зависит точность, как и от разрядности. К характеристикам компаратора относят:
- Чувствительность.
- Быстродействие.
- Стоимость.
- Долговечность.
- Стабильность.
- Нагрузочная способность.
- Входное сопротивление и пр.
Большинство компараторов реализуется на базе операционных усилителей, данные в справочниках приводятся совместные. Это достигается за счёт введения обратной связи, что придумано в 30-е годы XX века.
Характеристики компараторов
Под чувствительностью компаратора понимается минимальное напряжение, годное к восприятию. Дифференциальные пары транзисторов, применяемые в операционных усилителях, повышают температурную стабильность, потому служат для создания компараторов. Параметр тесно связан с разрешающей способностью или точностью. Чувствительность сильно зависит от схемного решения, это очевидный факт.
Помимо температурной стабильности и архитектуры на параметр влияют помехоустойчивость и надёжность. На практике оптимальной считают чувствительность, равную половине разряда аналого-цифрового преобразователя. Это значит, что из-за компаратора не снижается точность замера. На современном этапе развития технологии это порой сильно отличающиеся значения.
Быстродействие цифровой технике велико, но учитывая факт, что преобразователю нужно успеть сделать выборку, тактовая частота процессора должна быть в сотни, если не тысячи раз выше, нежели дискретность отсчётов. И главным ограничивающим фактором становятся скоростные характеристики компаратора. На его втором входе в момент измерения опорное напряжение постепенно растёт до достижения совпадения. И вырабатывается цифровой код результата.
Частота дискретизации определяется скоростными качествами исследуемого процесса. Если это звуковой диапазон, значения начинаются от 45 кГц и способны составлять вчетверо больше для студийной записи. На каждом интервале времени компаратор должен успеть сравнить напряжение, минимальная частота процессора для получения точности в 0,5% лежит уже в области 10 МГц. На практике наблюдаются намного большие величины, но помните, главная шина материнской платы становится самым быстродействующим участком системного блока (персонального компьютера).
Быстродействие компаратора выражается временем между соседними измерениями. Оно складывается из интервала повышения сравниваемого напряжения до нужного уровня и скорости работы электронных компонентов. К последним цифрам относят период от принятия решения компаратором на выдачу сигнального импульса до его реального появления на выводах. Вторым параметром считают крутизну фронта импульса, поскольку логика микросхем настроена на пороги срабатывания. Важным считается время восстановления, за которое компаратор возвращается в первоначальное состояние.
Указанные параметры в сумме определяют тактовую частоту самого компаратора. Под нагрузочной способностью понимается способность выдать сигнал, достаточно мощный для срабатывания зависимых схем. Различают так называемую перегрузочную способность, показывающую, как велика иногда разница в напряжении на соседних отсчётах. Для сокращения интервалов измерения, начиная со второго, компаратор может вести два параллельных процесса измерения:
- Увеличение напряжения в сравнении с предыдущим отсчётом.
- Уменьшение напряжения в сравнении с предыдущим отсчётом.
Так удастся быстрее найти результат, не перебирая весь диапазон с начала. Хотя потребуется целых два параллельно включённых компаратора. Но экономия времени стоит указанной борьбы. На успех подобного мероприятия напрямую влияет перегрузочная способность.
Входное сопротивление образует с источником сигнала резистивный делитель, и чем оно меньше, тем выше точность, большая часть напряжения падает именно здесь. С повышением параметра снижается и потребляемый ток. У большинства компараторов входное сопротивление подстраивается под конкретно взятые нужды, для отдельных схем.
Разновидности компараторов
Большинство компараторов строится на схемах операционных усилителей, охваченных цепью положительной обратной связи. За счёт большого коэффициента усиления удаётся добиться отвесной передаточной функции каскада.
Характеристика операционного усилителя на неком участке линейна. График симметричен относительно нуля. При некотором значении Uогр происходит насыщение и выходное напряжение дальше не растёт. Это наблюдается в положительной области входных значений и в отрицательной. Описанное свойство используется для построения компараторов.
Операционный усилитель охватывается положительной связью, при коэффициенте её передачи обратно пропорциональном коэффициенту передачи операционного усилителя, формула уходит в область бесконечности. От указанного параметра зависит крутизна графика, он становится вертикальным. Что требуется на практике для сравнения напряжений.
Эталоном допускается любое значение. К примеру, возможна реализация схемы перехода напряжения через нуль. Но в составе аналого-цифрового преобразователя измеряемая величина в рамках интервала считается постоянной, опорное напряжение растёт, пока не сравняется. И в этот момент вырабатывается импульс совпадения.
Пороговый компаратор
Пороговый компаратор напряжения – упоминается в литературе. Передаточная характеристика его однозначна – когда разница на входах операционного усилителя становится равной нулю, возникает отклик на выходе. Обратное движение вдоль передаточной характеристики идёт по прежней траектории.
Он организован, как рассказано выше: операционный усилитель охвачен петлёй обратной связи для получения крутой, отвесной передаточной характеристики. Но остаётся некая малая погрешность. Эталонное напряжение принято подавать на неинвертирующий вход.
Гистерезисный компаратор
Гистерезисный компаратор получил название за то, что коэффициент передачи цепи обратной связи меняется по абсолютному значению и по знаку. В результате получают семейство передаточных характеристик, позволяющее создать компаратор, включающийся по одному значению напряжения, а выключающийся по иному.
Устройство оказывается полезным в случае наличия на линии высокочастотной помехи. И когда на заданном интервале измерения величина многократно изменяется, обычному компаратору напряжения легко промахнуться. Одновременно гистерезисный верно оценит с точностью до помехи и продержит сигнал на выходе, пока исследуемый процесс близок к эталону.
Любой реальный компаратор считается гистерезисным из-за наличия ошибки, отдельные виды специально имеют расширенную петлю в связи с описанными нюансами. Ярко выраженной прямоугольной характеристикой характеризуется триггер Шмитта. Его гистерезисная передаточная функция может служить для построения компаратора. Из-за наличия положительной обратной связи характеристика триггера Шмитта обладает ощутимой крутизной.
Уже для аналоговых схем порог чувствительности достигал 5-10 мВ, чего хватает в большинстве случаев. Поскольку время срабатывания триггера Шмитта уменьшается до 0,1 мкс, становится возможным процесс оценки сигналов частотой в сотни кГц (гораздо выше ультразвука). Представленный на рисунке триггер характеризуется большим температурным дрейфом и малым диапазоном измерения.
Ввиду простоты популярны балансные регенеративные схемы с диодами. Обратная связь здесь выполнена через трансформатор. За счёт использования средней рабочей точки становится возможным одновременно произвести и положительную, и отрицательную обратную связь. Сравниваемые напряжения подаются на катоды диодов (n-область, в районе которой нарисована перпендикулярная черта). Рабочая точка транзистора выбрана в начале вольт-амперной характеристики, ток базы рассчитывается так, чтобы не произошло насыщения.
Конденсатор выполняет гальваническую развязку базы и входной цепи. Если диод Д1 заперт, а Д2 — открыт, работает отрицательная обратная связь. В результате генерации не происходит. В обратном случае блокинг-генератор производит первый импульс. Его положительный фронт свидетельствует, что эталон сравнялся с оцениваемой величиной. Чувствительность балансной регенеративной схемы может достигать 1 мВ.
Компараторы на туннельных диодах хороши малыми габаритами, отличным быстродействием, низким уровнем шумов, низкими переключающими порогами по мощности. Механическая прочность и стойкость полупроводников общеизвестны. Туннельные диоды считаются редкими приборами, не боящимися радиации, что делает их популярными в специальных применениях. Вдобавок сопротивление таких компараторов крайне мало, что снижает чувствительность.
Характеристика туннельного диода содержит участок с отрицательным дифференциальным сопротивлением, что позволяет реализовать нужную передаточную функцию. Очевидным недостатком схемы становится низкая точность. Вольт-амперная характеристика туннельного диода слишком пологая. Зато по простоте этот компаратор нельзя сравнить с любым другим типом устройств. Его пока нельзя назвать гистерезисным, для получения этого типа характеристики требуется, как минимум, два туннельных диода.
Самый простой компаратор
При помощи двух туннельных диодов нетрудно построить простейший компаратор, включая их по схеме твин. Предполагается, что элементы идентичны. Передаточная характеристика системы сильно зависит от напряжения питания схемы. Характеристики легко изменяются, что обусловливает большую гибкость применения. Чувствительность измеряются по току, и экспериментально полученные значения лежат в области 8 мкА при частоте тактирования 200 МГц, 3 мкА – при 50 МГц.
Деление по принципу действия
Помимо чисто функциональных особенностей, рассмотренных выше, компараторы делятся по принципу действия на:
- Регенеративные.
- Генераторные.
- Амплитудно-импульсные.
- Модуляторные.
Речь здесь идёт о формируемых устройствами выходных сигналах. В работе компаратора напряжения выделяют два процесса: сравнение величин и формирование выходного сигнала. Статическая ошибка обусловлена лишь двумя причинами:
- Шумами.
- Температурным дрейфом и старением.