Содержание
Автоматический выключатель – это устройство, при возникновении заданных условий обрывающее цепь питания нагрузки. Оборудование территориально входит в состав распределительного щитка. Целью становится отключение нагрузки в аварийной ситуации, плюс возможность обесточивания части домашней сети (к примеру, требуется при ремонтных или сервисных работах).
История и устройство автоматических выключателей
Первые упоминания о выключателях, способных выполнять функции автоматически, даются Томасом Эдисоном в 1879 году. В задачу устройств входило обесточивание цепей, состоящих из лампочек накала, при возникновении короткого замыкания или нештатных ситуаций. Однако коммерческие варианты технических решений оказались лишены этого новшества, и первые аналоги современных моделей запатентованы гораздо позднее. Швейцарская фирма Браун, Бовери & Си сделала это в 1924 году. Люди и сегодня пользуются продукцией компании под брендом АВВ.
Изначально принцип действия автоматических выключателей основывался на использовании магнито-термических расцепителей. С первых дней внедрялись устройства гашения искр. Необходимый шаг – типичные контакторы при срабатывании продуцировали дугу. Это создавало помехи и приводило к быстрому выходу из строя собственно автоматических выключателей. Для блокировки эффекта стали применять сжатый воздух и масло. В качестве среды для получения дуги часто используется вакуум или разреженный газ. В этих условиях горение не долгое.
Что касается моделей попроще, сложность помогают решить искрогасящие камеры. Они состоят из множества изолированных медных пластин и располагаются, пересекая траекторию дуги. В результате энергия разряда теряется на этих импровизированных конденсаторах. Методы гашения искры делятся на категории:
- Отклонение траектории дуги, удлинение пути.
- Разбиение разряда на несколько частей (к примеру, камера, обсуждавшаяся выше).
- Размыкание контактов в момент перехода переменного тока через нуль.
- Использование конденсаторов большой емкости для запасания энергии искры.
Магнито-термический расцепитель
Магнито-термический расцепитель считается основной составляющей частью большинства выключателей, решая одновременно две задачи:
- Термическая часть, основанная на биметаллическом реле, отвечает за отключение при медленном перегреве в течение длительного времени. Допустим, в инструкции написано, что при превышении током номинального значения на 45% выключатель сработает через 1 час. Это термическая (биметаллическая) часть устройства. Медленно и верно пластина из двух металлов греется до температуры срабатывания.
- Электромагнитная часть задействуется, когда на линии возникает сильная перегрузка. К примеру, короткое замыкание. Тогда через выключатель проходит большая мощность, и требуется быстро разомкнуть контакты для блокировки возникновения электрической дуги (чем быстрее растёт расстояние между контактами, тем слабее негативный эффект). Управление подвижной частью выполняется через электромагнитную катушку. При угрозе возникновения нештатной ситуации она мгновенно отщёлкивает выключатель, электрическая дуга не возникает.
Обратите внимание, в первом случае большого тока нет, а биметаллическое реле становится пассивным устройством, не требующим питания извне. Подобные технические решения применяются повсеместно. Прямо в аналогичном виде: в составе пускозащитных реле холодильников, внутри утюгов, обогревателей. Свойства биметаллических пластин применяются в электрочайниках. Это температурный датчик, реагирующий на изменение условий среды. Попробуйте спичкой подогреть биметаллическую пластину, и она отщелкнётся, словно ток превышает допустимый на заданную величину. Механизм инерционный, идеально подходит для отслеживания медленных изменений.
Электромагнитная часть состоит из соленоида, обмотка которого включена последовательно с нагрузкой. При резком повышении напряжения образуется мощный магнитный поток между витками, рывком втягивающий шток с контактом на конце. Порог срабатывания задаётся классом автоматического выключателя. Проще продемонстрировать на примере. В большинстве проспектов, рекламирующих свойства защитных автоматов, найдётся специфического вида график. Он характеризуется наличием вертикальной части, это показан отрезок действия электромагнитного расцепителя.
Класс автоматического выключателя, время-токовые характеристики
По горизонтали на время-токовой характеристике автоматического выключателя откладывают отношение тока к номинальному. По вертикали проставляется время полного разрыва цепи. Положение вертикального участка графика дает основание судить о классе автоматического выключателя. К примеру, для В это область от 3 до 5, для С – от 5 до 10, для D – от 10 до 20. Иллюстрацию проще провести на разноцветном графике, а из руководства расположился чуть левее, в черно-белых тонах. Если присмотреться, видно, что пример позаимствован из класса D. По этой характеристике допустимо судить о предназначении устройства. К примеру:
- Класс В с порогом срабатывания 3 – 5 номинальных значений годится для резистивной нагрузки. Освещение, обогреватели.
- Для индуктивно-ёмкостной нагрузки требуется класс автоматических выключателей С с порогом срабатывания до 10 номинальных значений тока. Сюда входят все типы двигателей, включая асинхронные и коллекторные. Задумайтесь о классе С, если в доме пылесос, стиральная машина, строительный инструмент.
- Класс D применяется для грубых цепей с большим потреблением: производственные участки цехов с обилием двигателей преимущественно асинхронного типа.
- Класс Z с порогом срабатывания 2 – 3 применяется преимущественно для электроники.
Известны прочие специфические типы. Основными считаются A, B, C и D. В прайсах буквы ссылаются на тип мгновенного (электромагнитного) расцепителя, а дальше уже каждый выбирает по собственным нуждам. На единый номинальный ток у производителя представлен сразу ряд моделей (у каждой собственный класс). Время срабатывания неизменно, варьируется лишь порог. Вопрос важен и почему-то редко обсуждается в пределах рекламных кампаний конкретных производителей. По скромному убеждению авторов знания о классах относятся к профессиональным. Считается, что заказывающий оборудование человек уже в курсе.
Периодически встречаются каталоги без указаний на класс автоматических выключателей. В этом случае нужно ориентироваться на отношение номинального и вызывающего срабатывание устройства токов. Они указываются в таблицах, производитель считает, что классность становится лишним параметром.
Разновидности автоматических выключателей
Главное разграничение проводится по числу фаз. Это неактуально для стандартных квартирных моделей, приобретает значение в промышленности. Часто, если выпадает одна фаза, по прочим потребление увеличивается. Образуется перекос, ведущий к выходу оборудования из строя. Трёхфазный автоматический выключатель рвёт питание сразу по всем выходам. Незаменим тремя обычным на 220 В.
Токи срабатывания выбираются согласно классу расцепителя, но в отдельных приборах возможно отдельно настраивать опцию. Допустим, автоматические выключатели 3RV10/3RV11 (каталоги Siemens) настраиваются на ток отключения, в 13 раз превышающий номинальный. Этим заведомо перекрываются потребности запуска большинства двигателей. Если потребитель недоволен такими характеристиками, возможно изменить параметры в нужную сторону.
Часто среди параметров автоматических выключателей попадается предельная отключающая способность. Поясним эту цифру на простом примере. Не стоит путать ее с током срабатывания расцепителя. Отключающей способностью описывают жуткую аварию, когда ток не просто достиг порогового значения, но многократно превысил лимит. К примеру, штатной считается ситуация, когда в цепи течёт 10,5 А. Одновременно номинальный ток составляет всего лишь 2,5 А. Значит, автоматический выключатель относится к классу В (10,5/2,5 = 4,2). Отключающая способность может быть, к примеру, 50 кА.
Это ток, при котором прибор ещё сможет выполнять обязанности. Не расплавится, не сгорит, не закоротит намертво цепь. Если ток короткого замыкания превышает отключающую способность, производитель снимает гарантии. В задачи проектировщика входит избежание подобной ситуации в принципе. Сделать это просто – требуется позаботиться, чтобы активное сопротивление кабелей не стало слишком низким. Оно становится фактором, ограничивающим ток. К примеру, в цепи 220 В десятки тысяч амперов никогда не появятся. Иначе требуется снижение активного сопротивления кабелей 4,4 мОм.
Это крайне малое значение. Для сравнения, по промышленным стандартам сопротивление цепи заземления не должно превышать 3 – 5 Ом, что на три порядка выше указанной цифры. Производители приборы изготавливают с гигантским запасом. Это касается и срока службы. Типичным значением становится 10000 циклов переключения – 10000 нештатных ситуаций. Понятно, что цифра недостижима при разумной эксплуатации домашней сети. Основным параметром автоматического выключателя из сказанного становится номинальный ток. Но при превышении значения мгновенного отключения не происходит.
Автоматический выключатель продолжит работать. И чтобы проследить дальнейший ход событий, нужно пользоваться рабочими характеристиками. К примеру, ориентируясь на приведённые на рисунке. В зависимости от кривизны обнаруживается, что при превышении номинального тока на 13% автоматический выключатель проработает пару часов. Иногда подобная информация выносится в таблицу характеристик, чтобы подчеркнуть указанный момент. Это обговаривается отдельно, данные напрямую влияют на поведение цепи.
Сотрите при выборе на характеристики автоматических выключателей:
- Предельная температура эксплуатации. Понятно, что для помещения рамки уже, а стоимость ниже, нежели для применения в уличных условиях.
- Иногда требуется знать степень защиты корпуса по классу IP. Это объясняется предписаниями стандартов.
- Внешнее исполнение типичное. Чаще корпус под DIN-рейку, позволяющий поставить прибор в стандартный распределительный щиток.
- Часто производитель приводит значение внутреннего сопротивления прибора. Этот параметр косвенно увязывается с предельной отключающей способностью и номинальным напряжением (по закону Ома). Сопротивление показывает, сколько активной мощности выделяется внутри корпуса при протекании тока.
- Гораздо реже роль играет частота напряжения. В промышленности часто применяются 400 Гц и прочие значения. Выключатели, изготовленные по таким требованиям, не всегда годятся для рядовой квартиры.