Содержание
С тех пор, как фон Клейст – не военачальник, священник – решил ухватить рукой банку (бутылку), заполненную водой, с опущенным туда электродом, прошло немало времени. Конструкций конденсаторов сегодня великое множество. Бессильны обещать рассмотреть 100%, дадим понятие о принципах работы конденсатора, технических характеристиках. Надеемся, обзор выйдет удачным.
Осторожно, работает конденсатор: история лейденской банки
Проще начать статическим зарядом. Отмечено учеными, проводник способен накапливать поверхностью электричество. Плотность распределения одинакова по площади. Ключевое отличие металлов от диэлектриков, накапливающих заряд. Обживая кусок железа, носители тока стремятся занять крайнее положение, отталкиваясь взаимно. В результате скапливаются равномерно по поверхности.
На принципе созданы генераторы, способные копить заряд потенциалом единицы миллионов вольт. При прикосновении к токонесущей части человек попросту испепелится. Аналогично действуют конденсаторы. Сформированы проводниками, площадь которых сильно увеличена. Достигается различными методами. В электролитических конденсаторах алюминиевая фольга скатывается рулоном. Небольшой цилиндр содержит метры металлической ленты.
Поясним работу. Когда на металлической (проводящей поверхности) появляется заряд, начинается поверхностное распределение. В 1745 году священник-юрист Эвальд Юрген фон Клейст обнаружил: удерживая в руках банку с водой, запасает внутри электричество. Ладонь служит проводящей обкладкой, объем жидкости (по внешней поверхности) – другой. Стекло выступает диэлектрическим барьером. При опускании в воду электрода носители стремятся занять крайнее положение, бороздя поверхность. Через стекло поле действует на ладонь, ответно начинаются схожие процессы (заряд притягивает носители противоположного знака).
Позже емкость догадались обернуть фольгой, получилась лейденская банка – первый дееспособный конденсатор на Земле, изобретенный человеком. Произошло, когда Питер ван Мушенбрук впечатлился силой полученного в процессе опыта ударом электричества. Стало понятно: опыты небезопасны, руку следует заменить. Ученые писал: второй раз избегает испытывать судьбу ради королевства Франции. Датчанин Даниэль Гралат стал первым догадавшимся соединить лейденские банки параллельно, обеспечивая более высокую емкость системе. Напоминает современный свинцовый аккумулятор задумкой.
Смешно, подобные устройства использовались вплоть до 1900 года, входящая в обиход радиосвязь вынудила искать новые пути решения проблемы, использовались сравнительно высокие частоты электрических сигналов. В результате появились первые бумажные конденсаторы, маслянистое полотно отделяло друг от друга две обкладки свернутой цилиндром фольги. Постепенно с развитием производства в качестве изоляторов стали применяться иные материалы:
- Керамика;
- Слюда;
- Бумага.
Истинный прорыв в конструировании конденсаторов произошел, когда люди догадались диэлектрик заменить слоем оксида окисленной поверхности металла. Сказанное касается электролитических конденсаторов. Один цилиндр фольги покрыт оксидом. Чаще сегодня используется травление (намеренное окисление материала действием агрессивных сред), если требования технических характеристик велики, применяется анодирование. Позволяя получить гладкую поверхность, плотно прилегающую к электроду противоположного знака.
Обкладками выступают оксидированная фольга и бумага, пропитанная электролитом. Разделены тончайшим слоем оксида, позволяя получить потрясающие емкости, единицы-десятки микрофарад сравнительно малого объема. Технические характеристики конденсаторов просто потрясающие. Второй рулон алюминиевой фольги послужит простым проводником электричества, считается одним контактом. Оксид характеризуется удивительным свойством – проводит ток в одном направлении. При подключении электролитического конденсатора неправильной стороной происходит взрыв (разрушение диэлектрика, закипание электролита, образование пара, разрыв корпуса).
Отказываясь служить диэлектриком, разделяющий слой становится проводником. Из-за резкого повышения температуры области начинается лавинообразная реакция меж металлом и электролитом, конденсатор взбухает. Видели многие радиолюбители, избегаем рассказывать, процессе мало веселого предоставит внимательному зрителю.
Зачем конденсатору диэлектрик
Было замечено: если поместить меж пластинами конденсатора изолирующий материал, емкость возрастает. Долго ломали головы ученые мужи, было раскрыто понятие диэлектрической проницаемости. Оказывается, согласно теореме Гаусса можно связать с емкостью конденсатора напряженность поля обкладок. Получается, изолятор обеспечивает накопление зарядов металлами, собирая поверхностью носители противоположного знака. Полагаем, читатели догадались: те создают поле, направленное навстречу исходному, вызывая ослабление, повышающее вместимость конструкции.
Таблицы показывают: бумага, керамика выглядят не лучшими материалами. Значения серной кислоты достигают 150 единиц, почти на два порядка выше. Причем в чистом виде вещество признано изолятором. Вероятно, настанет день, когда принцип действия конденсатора будет реализован не раствором, а серной кислотой. Известные свинцовые аккумуляторы по-другому запасают энергию (реакция). Рассмотренные варианты не единственные, распространены шире.
Глобально конденсаторы поделим двумя семействами:
- Электролитические (полярные).
- Неполярные.
Рассказывали обустройство первых. Разница ограничивается материалом обкладок. Оксид титана снабжен диэлектрической проницаемостью близкой сотне. Понятно, материал предпочтительней для создания высококлассных изделий. Стоимость кусается. Титанат бария демонстрирует диэлектрическую проницаемость повыше. Практически любой конденсатор сформирован обкладками. Диэлектрик добавляет емкости изделию. Чаще лучшие модели конденсаторов содержат ценные металлы: палладий, платину.
Маркировка, технические характеристики конденсаторов
Маркировка конденсаторов содержит параметр максимально допустимого рабочего напряжения. Обозначение приводится согласно ГОСТ 25486, затем уточнения достигают отраслевых стандартов. Например, номинал проставляется согласно ГОСТ 28364. Отдельного стандарта по электролитическим конденсаторам найти практически невозможно. Однако авторы сделали, читателям предлагаем проштудировать ГОСТ 27550. На корпусе любые виды конденсаторов содержат маркировку:
- Логотип изготовителя.
- Тип конденсатора.
Сложно сказать определенно, большинство электролитических конденсаторов снабжены маркировкой-литерой К, несколькими цифрами, часто разделенными дефисом. Следуя логике, найдем в интернете соответствующий стандарт либо другие материалы.
- По правилам ГОСТ 28364, номинал состоит из 3-5 символов, присутствует буква.
П означает приставку пико, н – нано, мк – микро. Если номинал дополнен дробной частью, занимает последнее место, вослед литере. Емкостной ряд (неполный) значений приводится ГОСТ 28364 на примерах. Выполняются нормы этого стандарта практически? Не для электролитических конденсаторов. Вызвано, по-видимому, большими номиналами. Запросто на К50-6 встретите надпись наподобие 2000 мкФ. Согласно ГОСТ 28364, должно выглядеть наподобие 2м0. Для электролитических конденсаторов применяется ГОСТ 11076. Наряду с кодированными обозначениями (ГОСТ 28364) допускается традиционная запись (2000 мкФ). Видите, назначение конденсаторов часто определяет способ маркировки. Электролитические часто выступают составной частью фильтров цепи питания. Здесь нужен больший номинал, функциональность сильно отличается принципа действия конденсаторов разделительных ветвей цепей переменного тока.
- Если по былым нормам рабочее напряжение маркировкой конденсатора ставилось на первое место, в современных моделях наоборот. Обозначение выражено вольтами.
Подразумевается рабочее напряжение, не пробивное. Конденсаторные установки легко сгорают, сожженные повышенными значениями. Тоньше слой диэлектрика, проще происходит пробой. Существует противоречие между дистанцией, разделяющей обкладки (меньше – выше номинал) и желанием повысить рабочее напряжение.
- Допустимое отклонение емкости чаще замалчиваются.
Процесс старения выводит номинал за рабочие пределы. Можно сказать, что то, для чего нужен конденсатор, не изготовишь при помощи просроченных изделий. Однако радиолюбители делают по-своему. Прозванивают конденсатор, определяют новый номинал, заручившись помощью тестера, пользуются.
- Литера В стоит для конденсаторов всеклиматического исполнения.
- Перед зарядкой конденсатора попробуйте понять, полярный ли (электролитический).
Изделие способно взорваться. Разумеется, полярный конденсатор нельзя включать в цепь переменного тока. Единого типа маркировки не предусмотрено, оговаривается бумаги: требования могут быть указаны отраслевыми техническими условиями. Например, знаки плюса/минуса. На импортных изделиях отрицательный полюс помечается светлой полосой темного корпуса.
- Обозначение довершается датой выпуска (месяц, год), ценой.
Понятно, последнее при современных экономических условиях неактуально.
Обратите внимание, конденсатор способен долго хранить заряд. Чревато опасностью получить удар током. Любой ремонтник, работающий с радиоаппаратурой, знает: началу ремонта импульсного блока питания предшествует процесс разрядки конденсатора. Чаще делается при помощи запрещенной стандартами лампочки, вкрученной в патрон. Два оголенных провода замыкают на токонесущие части цепи, импульс на короткое время зажигает спираль. Кстати, конструкцию часто вставляют взамен предохранителей, чтобы понять, по-прежнему ли ток велик в цепи (означает наличие неисправности, вызывает необходимость дальнейшей диагностики).
Выявление неисправности конденсатора требует сноровки, при наличии специфических знаний осуществимо. Нужно иметь на руках простейший мультиметр. Уже рассказывали, как проверить конденсатор при помощи тестера, направляем читателей на соответствующий обзор, сами с позволения почтенной публики спешим откланяться.