Как сделать электродвигатель своими руками

Рассмотрим некоторые аспекты конструирования. Мы не обещаем сделать вечный двигатель, наподобие того, который приписывают авторству Тесла, но кое-что интересное все же расскажем. Также не будем тревожить читателей различными скрепками и батарейками, а вместо этого предлагаем поговорить о том, как можно приспособить уже существующий мотор под свои цели. Известно, что конструкций много, и все они где-то используются, но современная литература такие базовые основы оставляет за кормой. Поэтому мы проштудировали учебник прошлого века на предмет того, как сделать электродвигатель своими руками, и теперь предлагаем окунуться в такие знания, которые составляют базис для любого специалиста.

Почему в быту часто применяются именно коллекторные двигатели

Коллекторный тип двигателя

Коллекторный тип двигателя

Если брать одну фазу на 220В, то принцип работы электродвигателя на коллекторе позволяет изготовить устройства в 2-3 раза менее массивные, нежели было бы при использовании асинхронной конструкции. Это очень важно при изготовлении таких приборов, как ручные блендеры, миксеры различного рода и даже мясорубки. Но помимо прочего асинхронный двигатель сложно разогнать выше 3000 оборотов в минуту, тогда как для коллекторных такое ограничение отсутствует. А это делает их единственно пригодными для реализации конструкций центрифужных соковыжималок, не говоря уже о пылесосах, где скорость зачастую ничуть не ниже.

И отпадает вопрос, как сделать регулятор оборотов электродвигателя. Задача давно решена путём отсечки части цикла синусоиды питающего напряжения. Это становится возможным, потому что коллекторному двигателю нет разницы, питаться переменным или постоянным током. В первом случае падают характеристики, но с этим мирятся ввиду очевидных выгод. Вот почему работает электродвигатель коллекторного типа и в стиральной машине, и в посудомоечной. Хотя скорости там очень отличаются. (См. также: Как сделать удлинитель своими руками)

Весьма просто получить и реверс. Для этого просто меняется полярность напряжения на одной из обмоток (если затронуть обе, то направление вращения останется прежним). Другой уже вопрос – как сделать двигатель, у которого столько составных частей. Мы немного поговорим на эту тему, хотя сделать своими руками коллектор вряд ли кому-то удастся, а вот намотать его заново и подобрать статор вполне реально. Следует сразу заметить, что именно от числа секций ротора и зависит скорость вращения (равно как и от амплитуды питающего напряжения). Тогда как на статоре всего лишь два полюса.

Наконец, именно при использовании этой конструкции удаётся создать устройство универсальное. Работает двигатель без проблем и от переменного, и от постоянного тока. Просто на обмотке делают отвод, и при включении от выпрямленного напряжения задействуются все витки, а при синусоидальном только часть их. Это позволяет сохранить номинальные параметры. Мы бы не сказали, что сделать примитивный электродвигатель коллекторного типа будет простой задачей, зато можно целиком и полностью приспособить параметры под свои нужды. А это великое дело, потому что вряд ли мы занялись такой задачей, чтобы посмотреть, как крутится медная спиралька вокруг батарейки ААА.

Особенности работы коллекторных двигателей

В коллекторном двигателе обычно не очень много полюсов на статоре. Если говорить точнее, то их и вовсе два — северный и южный. Магнитное поле в противовес асинхронным двигателям здесь не вращается. Вместо этого меняется положение полюсов на роторе. Такое положение дел обеспечивается тем, что щётки постепенно движутся по секциям медного барабана. Особой намоткой катушек обеспечивается должное распределение. Полюса как бы скользят по кругу ротора, толкая его в нужном направлении.

Вот почему для обеспечения режима реверса достаточно поменять полярность питания любой обмотки. Ротор в этом случае называется якорем, а статор – возбудителем. Вся прелесть заключается в том, что включать эти цепи можно как параллельно друг другу, так и последовательно. И от этого будут значительно изменяться характеристики прибора. Это все описывается так называемыми механическими характеристиками, взгляните на прилагающийся рисунок, чтобы иметь представление, о чем идёт речь. Здесь достаточно условно показаны графики для двух случаев:

График изменения характеристик прибора

График изменения характеристик прибора

  1. При параллельном питании возбудителя (статора) и якоря (ротора) коллекторного двигателя постоянным током его механическая характеристика почти горизонтальна. Это значит, что при изменении нагрузки на вал практически сохраняется номинальная частота вращения вала. Это применяется на обрабатывающих станках, где изменение оборотов не лучшим образом сказалось бы на качестве. В результате деталь вращается при касании её резцом столь же резво, как и при старте. Но если препятствующий момент слишком возрастает, то происходит срыв движения. Двигатель останавливается. Для нас из всего этого нужно извлечь следующее: если хотите двигатель от пылесоса применить для создания металлообрабатывающего (токарного) станка, то следует обмотки соединить параллельно. Поскольку в бытовой технике как раз доминирует другой тип включения. Но это сделано не просто так. При параллельном питании обмоток переменным током образуется слишком большое индуктивное сопротивление. Поэтому данную методику следует применять с осторожностью.
  2. При последовательном питании ротора и статора у коллекторного двигателя появляется прелестное свойство – большой крутящий момент на старте. Такое качество активно используется для страгивания трамваев, троллейбусов и, скорее всего, электропоездов. Главное, что при увеличении нагрузки обороты не срываются. Зато если запустить в таком режиме коллекторный двигатель на холостом ходу, то скорость вращения вала будет расти безмерно. Если мощность мала – десятки Вт – беспокоиться не о чем: сила трения подшипников и щёток, а также возрастание токов индукции и явление перемагничивания сердечника вкупе затормозят рост на каком-то значении. Но в случае промышленных агрегатов или того же пылесоса, когда его двигатель извлекли из корпуса, повышение скорости идёт лавинообразно. В этом случае центробежная сила столь велика, что нагрузки могут разорвать якорь. Будьте осторожны при запуске коллекторных двигателей с последовательным возбуждением.

Коллекторные двигатели с параллельным включением обмоток статора и ротора отлично поддаются регулировке. За счёт внедрения реостата в цепь возбудителя можно значительно поднять обороты. А если такой же присоединить в ветвь якоря, то вращения, напротив, замедлится. Это широко используется в технике для получения нужных характеристик.

Конструкция коллекторного двигателя и связь её с потерями

При конструировании коллекторных двигателей нужно принимать во внимание некоторые сведения, касающиеся потерь. В данном случае они бывают трёх видов:

  • Электрическими принято называть тепловые потери при движении токов по проводникам. Для снижения этой величины все обмотки выполняются из меди, имеющей наименьшее удельное сопротивление из всех доступных материалов. Понятно, что было бы лучше взять серебро, а золото – совсем отлично, но это было бы слишком дорого. Тепловые потери зависят также от сечения. Вот почему нельзя выбирать толщину проводников слишком малой. С этой точки зрения она ограничивается рассеиваемой мощностью, которая не должна быть меньше реально присутствующей в двигателе. Иначе обмотка сгорит. С другой стороны слишком толстые проводники из меди не только сделали бы двигатель громоздким и тяжёлым, но и удорожили бы его. По этому вопросу мы можем сделать важно дополнение: ни один двигатель не должен быть лишён средств защиты. Это могут быть различные термопредохранители или реле. Найти их можно в свободной продаже. А значения срабатывания должны быть ниже температуры выгорания обмотки (изоляции). Обычно берут порядка 135 градусов Цельсия. Технические данные на предельные температуры проводов приводятся в их характеристиках (data sheet).

    Коллекторы

    Коллекторы

  • Магнитные потери возникают в сердечнике якоря. Казалось бы, логично его сделать из стали, но это недопустимо. Он изготавливается из изолированных друг от друга пластин. Совсем как сердечник трансформатора. В противном случае вращающийся в магнитном поле статора металл станет подобен индукционной кухонной плитке. Листы разделены слоем лака. Кроме того используется специальная электротехническая сталь с повышенным содержанием в ней кремния. Это приводит к увеличению удельного сопротивления материала, что вызывает снижение значений вихревых токов. Наконец, сталь должна быть мягкой и специально обработанной для снижения остаточного магнетизма. Если двигатель работает на постоянном токе, то его корпус и статор можно изготавливать из сплошных кусков металла. Но когда работа идёт от сети 220В или 380В, то все прилегающие детали выполняются листовыми с разделением послойно посредством лака.
  • Про механические потери уже говорилось выше. Они могут служить не только паразитным эффектом, но и уберечь маломощный коллекторный двигатель с последовательным возбуждением от выхода из строя. Благодаря тому, что обороты не выйдут за предел по скорости.

Обычно при питании коллекторного двигателя переменным током используется последовательное включение обмоток. Потому что в противном случае получается слишком большое индуктивное сопротивление. (См. также: Как сделать светильник своими руками)

К сказанному можно добавить, что при питании коллекторного двигателя переменным током вступает в роль индуктивное сопротивление обмоток. Вот почему при одном и том же действующем напряжении частота оборотов понизится. Кроме того полюса статора и корпус нужно будет как-то уберечь от магнитных потерь. В необходимости этого можно убедиться на простом опыте: питайте маломощный коллекторный двигатель от батарейки. Его корпус останется холодным. Но если теперь подать переменный ток с тем же действующим значением (то есть по показаниям тестера), то картина изменится. Теперь корпус коллекторного двигателя начнёт греться.

Эскиз сбора статора в поперечном срезе и сбоку

Эскиз сбора статора в поперечном срезе и сбоку

Вот почему даже кожух стараются собрать из листов электротехнической стали. Клепая её или склеивая при помощи БФ-2 или его аналогов. Наконец, дополним это ещё одним утверждением: листы набираются по поперечному срезу. Очень часто статор собирается по эскизу, показанному на рисунке. В этом случае катушка наматывается отдельно по шаблону, а затем изолируется и надевается на своё место. Это помогает упростить сборку. Что касается методик, то проще всего было бы нарезать сталь на плазменном станке, и лучше не думать о том, во сколько это обойдётся.

Проще всего найти (на свалке, в гараже и т. п.) уже готовую форму для сборки. А потом уже намотать под неё катушки из медной проволоки с лаковой изоляцией. Для этого заведомо диаметр должен быть больше. Сначала готовую катушку натягивают на один выступ сердечника, после чего на другой. Затем прижимают проволоку так, что по торцам остаётся небольшой воздушный зазор. Считается, что это не критично. Чтобы все это держалось, у двух крайних пластин острые углы срезаются, а оставшаяся серёдка отгибается наружу, отжимая торцы катушки вовне. Это поможет собрать двигатель так, как это принято делать на заводах.


Очень часто (особенно в блендерах) можно найти разомкнутый сердечник статора. Это не искажает форму магнитного поля. Но поскольку полюс лишь один, то особой мощности в этом случае ожидать не приходится. Форма сердечника напоминает букву П, между ножками которой в магнитном поле вертится ротор. Под него сделаны кругообразные прорези в нужных местах. Подобный статор каждый может собрать самостоятельно из какого-нибудь старого трансформатора. Это проще, нежели сделать электродвигатель своими руками с нуля.

Сердечник в месте намотки изолируется стальной гильзой, а по бокам – диэлектрическим фланцами, которые можно вырезать из любого подходящего пластика.